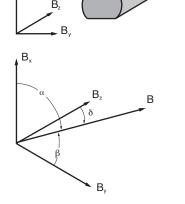
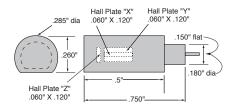
Bulk Indium Arsenide BH-703 / 706 Hall Sensors

Three Axis


Description

The BH-703 multi-axis Hall sensor consists of three individual Hall elements oriented in mutually perpendicular planes and encapsulated in a small epoxy package. This enables the BH-703 to produce voltages proportional to the three orthogonal components (B_x, B_y, B_z) of a magnetic flux in any direction. Thus the BH-703 may be permanently mounted or arbitrarily oriented to sense fields in any direction.

The magnitude of the flux vector, B, can be found using the following relation:


$$B = \sqrt{B_X^2 + B_Y^2 + B_Z^2}$$

The flux direction may be found using the following relations: $\alpha = \cos^{-1}B_x/B$, $\beta = \cos^{-1}B_y/B$, $\delta = \cos^{-1}B_z/B$ where α , β , δ are the angles between B and B_x , B_y , B_z respectively.

Features

- Three Axis, simultaneous measurement
- Instrumentation Quality

Mechancal Specifications

- a. Notes: All tolerances unless specified are ± 0.010 ". Unless otherwise noted: B=1kG, $I_c=I_{cn}$, $T=25^{\circ}C$, Static air.
- b. Leads: #34 AWG copper with polyurethane insulation, approximately 20" long. The BH-703 has 12 leads.
- c. Polarity: When the magnetic field vectors are oriented as shown, and Ic enters the red lead, the positive Hall voltage appears at the blue leads.

Electrical Specifications

SPECIFICATIONS	UNITS	BH-703	BH-706
Input resistance, R _{in}	ohms	3.5 max.	3 max.
Output resistance, R out	ohms	3.5 max.	3 max.
Magnetic sensitivity, V _H (loaded)	mV/kG	5.5 to 10	6 to 9
Max. resistive residual voltage, V _M @ B=0	±μV	100	200
Max. control current @25°C, static air	mA	300	300
Nominal control current	mA	100	100
Angularity	degrees	Hall plates 3 within ±2	Hall plates 2 within ±2
Sensitivity matching	±% of RDG	1	1
Max. linearity error, (-10 kG to +10 kG) with $R_{\rm lin}$	±% of RDG	1	1
Mean temperature coefficient of V _H (-20°C to +80°C)	%/°C	-0.04 max.	-0.04 max.
Mean temperature coefficient of resistance (-20°C to +80°C)	%/°C	+0.15 max.	+0.15 max.
Temperature dependence of resistive residual voltage (-20°C to +80°C)	μV/°C	0.5 max.	0.5 max.
Operating temperature range	°C	-40 to +100	-40 to +100
Storage temperature range	°C	-40 to +120	-40 to +120

Bulk Indium BH-703 / 706

Hall Sensors

Two Axis

Description

The BH-706 multi-axis Hall sensor consists of two Hall elements mounted in mutually perpendicular planes and encapsulated in a small epoxy package. This enables the BH-706 to produce voltages proportional to two perpendicular components (B_x , B_y) of a magnetic field. Thus the BH-706 may be permanently mounted to sense field components in its X, Y planes.

The magnitude of the flux vector, B within the X, Y plane can be found using the following equation:

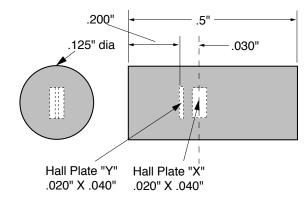
$$B = \sqrt{B_X^2 + B_V^2}$$

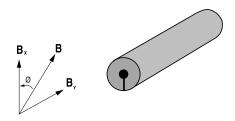
The direction of B can be computed using the following equation:

 $\emptyset = tan^{-1}B_y/B_x$

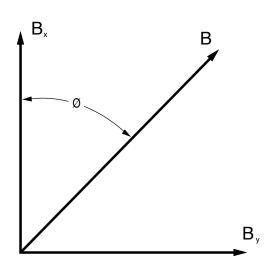
where \emptyset is the angle between B and B_x.

Mechancal Specifications


Leads: #34 AWG copper with polyurethane insulation, approximately 20" long. The BH-706 has 8 leads.


Polarity: When the magnetic field vectors are oriented as shown, and I_c enters the red leads, the positive Hall voltage appears at the blue leads.

Note: All tolerances unless specified are ± 0.010 ".


Features

- Two Axis, simultaneous measurement
- Instrumentation Quality

Unless otherwise noted: $B=1~kG,~l_c=l_{cn},~T=25~C,~Static~air.$

Note: Due to continuous process improvement, specifications subject to change without notice.

Rev. date 04/2003